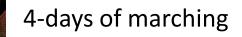
DELIRIUM IN CRITICALLY ILL PATIENTS

Detection, Impact, Prediction and Prevention of ICU delirium

Mark van den Boogaard, PhD Scientific researcher Dep. Intensive Care Medicine

6th EfCCNa CONGRESS 2015


Expanding Horizons of Critical Care Nursing in Europe

Valencia, Spain 29 - 31 January 2015

Nijmegen: 150,000 inhabitants

Colleagues ICU Research

Delirium features

- Acute onset (hours, days)
- Fluctuations and altered level of consciousness (using RASS/SAS or GCS)
- Cognitive disturbances: memory problems, disorientation (t,p,p), language problems, hallucinations and delusions

(DSM-V criteria)

There is always a physical problem causing delirium

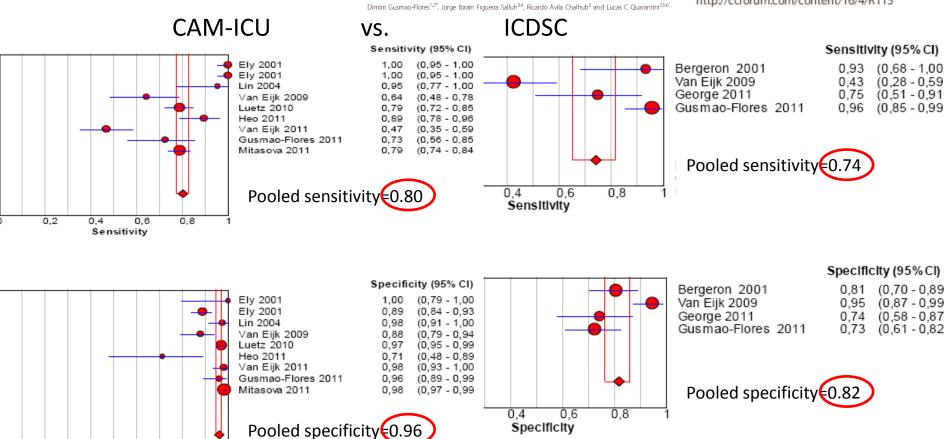
Agenda

- Detection
- Occurrence and outcome
- Prediction of delirium
- Prevention of delirium

Delirium detection

-'Gold standard': Psychiatrist, geriatrist or neurologist using DSM criteria

- Undoable in daily practice
- Five delirium assessment tools developed for ICU patients


	Delirium Monitoring Tools				
Psychometric Criteria Scored	Confusion Assessment Method for the ICU	Intensive Care Delirium Screening Checklist	Cognitive Test for Delirium	Nursing Delirium Screening Scale	Delirium Detection Score
Item selection description	2	1	2	1	1
Content validation	1	0	2	0	0
Limitations presented	1	1	1	0	1
Interrater reliability	2	2	2	2	2
Interrater reliability tested with nonresearch team	1	1	0	0	0
Interrater reliability tested if interrater reliability is low or inconsistent	NA	NA	NA	NA	0
Total number of participants	2	2	2	2	2
Criterion validation: sensitivity	2	2	2	2	0
Criterion validation: specificity	2	1	2	2	2
Predictive validation	2	2	0	1	0
Feasibility	1	0	0	0	0
Directives of use	1	1	1	1	1
Relevance of scale in practice	1	1	0	0	0
Total score (range: 0–19 or 21)	18/19	14/19	14/19	11/19	9/21
Weighted scoreª (range: 0–20)	19.6	16.8	13.0	12.4	8.2
Quality of psychometric evidence (based on weighted scores)	VG	VG	М	Μ	VL

Performance of assessment tools

The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies

Gusmao-Flores et al. Critical Care 2012, 16:R115 http://ccforum.com/content/16/4/R115

0.2

0.4

Specificity

0.6

0.8

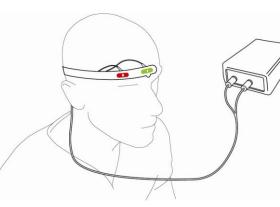
Still the CAM-ICU?

Routine Use of the Confusion Assessment Method for the Intensive Care Unit

A Multicenter Study

Maarten M. van Eijk¹, Mark van den Boogaard², Rob J. van Marum³, Paul Benner⁴, Piet Eikelenboom^{5,6}, Marina L. Honing⁷, Ben van der Hoven⁸, Janneke Horn⁹, Gerbrand J. Izaks¹⁰, Annette Kalf¹¹, Attila Karakus¹², Ine A. Klijn¹³, Michael A. Kuiper¹⁴, Frank-Erik de Leeuw¹⁵, Tjarda de Man¹⁶, Roos C. van der Mast¹⁷, Robert-Jan Osse¹⁸, Sophia E. de Rooij¹⁹, Peter E. Spronk²⁰, Peter H. van der Voort²¹, Willem A. van Gool⁵, and Arjen J. Slooter¹ Am J Respir Crit Care Med Vol 184. pp 340–344, 2011

Subpopulation (n)	Sensitivity (95% Cl)	Specificity (95% Cl)
Total population (n = 181)	47% (35%-58%)	98% (93%–100%)
Psychoactive medication between assessments		
Yes $(n = 46)$	54% (33%–74%)	95% (75%–99%)
No $(n = 135)$	43% (30%-58%)	99% (93%-100%)
Delirium subtypes*		
Hypoactive (delirious $n = 36$; not delirious $n = 106$)	31% (17%-48%)	98% (92%–99%)
Hyperactive (delirious $n = 7$; not delirious $n = 106$)	100% (56%–100%)	98% (93%-100%)
Mixed-type (delirious $n = 32$; not delirious $n = 106$)	53% (35%-74%)	98% (93%–100%)
Admitting discipline		
Internal medicine (n = 52)	54% (33%–73%)	96% (78%–100%)
General surgery $(n = 64)$	38% (21%-59%)	97% (85%–100%)
Cardiology and cardiothoracic surgery $(n = 43)$	58% (34%-79%)	100% (83%-100%)
Neurology and neurosurgery $(n = 22)$	17%(1%–64%)	100% (76%–100%)


Highest sensitivity in center who had a delirium protocol !

So there is a need for improvement in delirium assessment

Deliero-electrode

Promising new assessment tool: three leads EEG monitor

but for what reason; is delirium a problem?

Occurrence and outcome

- Prevalence of ICU delirium 11-89% (depending on time,

methods of measurement, patient category)

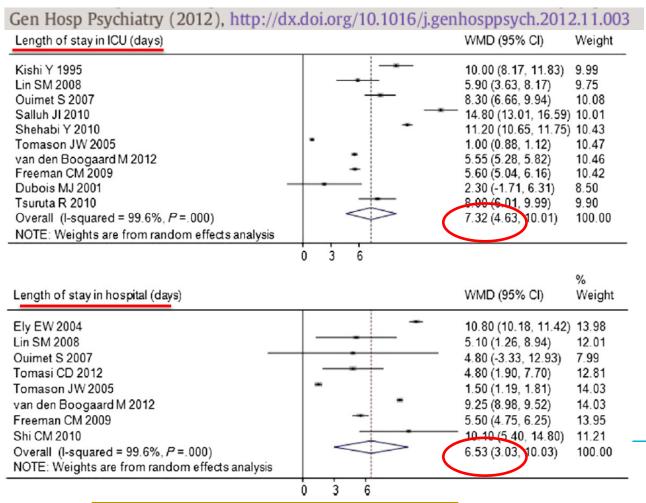
- Incidence overall is around **25-50%**

- Surgical patients	15%
- Medical patients	42.9%
- Trauma patients	68%

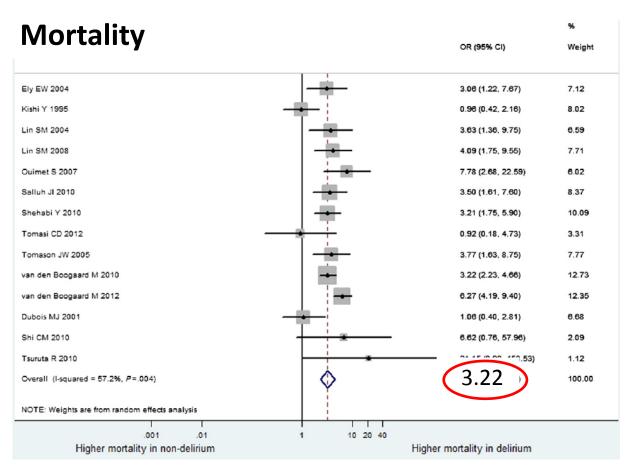
- Neurology patients 90.5%

Short term outcome

• Median delirium duration 2 days [IQR 1-7]


	Delirious (n=411)	Non-delirious (n=1202)	p-value (adj. APACHE-II score)
Time on ventilator (d)	4.6 [1-11]	0.3 [0-1]	<0.0001
Re-intubation	10%	0.5%	<0.0001
Unplanned removal of catheters	23.1%	0.6%	<0.0001
LOS-ICU (d)	6 [2-13]	1 [1-2]	<0.0001
LOS-Hospital (d)	20 [10-39]	7 [5-14]	<0.0001
In-Hospital mortality	73 (17.8%)	40 (3.3%)	<0.0001

Data expressed as median and IQR or absolute number and %


Short term outcome

Impact of delirium on clinical outcome in critically ill patients: a meta-analysis $\overset{,\,\,}{\overset{\,}{\overset{\,}}{\overset{\,}}}$

Zhongheng Zhang, M.M.^{*}, Lifei Pan, M.B., Hongying Ni, M.M.

Short term outcome

Adjusted voor APACHE-II, but no SOFA!

Using another statistical approach

Table 2 Effect estimates for association between delirium and mortality in intensive care unit using various statistical approaches

Variables	Logistic regression	Competing risks survival regression	Marginal structural model	
Adjustment factors:				
Baseline covariables	Yes	Yes	Yes	
Time varying onset of delirium	No	Yes	Yes	
Competing risks of death and discharge No		Yes	Yes	
Evolution of disease before delirium onset*	No	No	Yes	
Effect estimate†‡:				
Crude	2.60 (1.76 to 3.85)	3.14 (2.32 to 5.04)	3 14 (2.22 to 5.04)§	
Adjusted**	1.77 (1.15 to 2.72)	2.08 (1.40 to 3.09)	1.19 (0.75 to 1.89)††‡‡	
		BMJ 2014 349-06552 doi: 10.1136 bmj j	g8652 (Published 24 November 2014) Page 1 c	

RESEARCH

The attributable mortality of delirium in critically ill patients: prospective cohort study

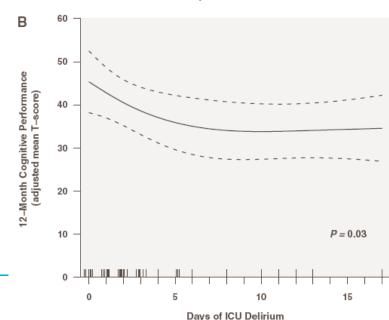
OPEN ACCESS

Peter M C Klein Klouwenberg PhD student¹, Irene J Zaal PhD student¹, Gristian Spitoni statistician², David S Y Ong PhD student¹, Arendina W van der Kooi clinical technologist¹, Marc J M Bonten epidemiologist², Arjen J C Slocten *reurologist* intensivist¹, Olal L Cremer anaesthesiologist¹ intensivist²

Conclusion overall:

Delirium is associated with poor outcome on the short term

Delirium and long-term outcome


• Quality of Life: no differences on physical outcome between

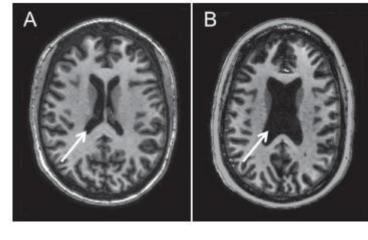
delirium vs non-delirium (12 and 18 mos after ICU) (Van Rompaey (CC, 2011); van den Boogaard (CCM, 2012))

• Sustained cognitive disturbances (Girard (CCM, 2010); van den Boogaard (CCM, 2012)) associated with duration of delirium

Delirium as a predictor of long-term cognitive impairment in survivors of critical illness Timothy D. Girard, MD, MSCI; James C. Jackson, PsyD; Pratik P. Pandharipande, MD, MSCI; Brenda T. Pun, MSN; Jennifer L. Thompson, MPH: Avumi K. Shintani, PhD, MPH: Sharon M. Gordon, PsvD: Angelo E. Canonico, MD: Robert S. Dittus, MD, MPH; Gordon R. Bernard, MD; E. Weslev Elv, MD, MPH Cognitive outcomes during follow-up Follow-up Assessment Outcome, % 3 mos 12 mos (n/Total) $(n = 76)^{a}$ $(n = 52)^{a}$ No impairment 21% (16/76) 29% (15/52) Mild/moderate 17% (13/76) 35% (18/52) impairment Severe impairment 62% (47/76) 36% 19/52

Crit Care Med 2010 Vol. 38, No. 7

Days of ICU Delirium


The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: The VISIONS cohort magnetic resonance imaging study*

Max L. Gunther, PhD; Alessandro Morandi, MD, MPH; Erin Krauskopf, BS; Pratik Pandharipande, MD, MSCI; Timothy D. Girard, MD, MSCI; James C. Jackson, PsyD; Jennifer Thompson, MPH; Ayumi K. Shintani, PhD; Sunil Geevarghese, MD, MSCI; Russell R. Miller III, MD, MPH; Angelo Canonico, MD; Kristen Merkle, BA; Christopher J. Cannistraci, MS; Baxter P. Rogers, PhD; J. Chris Gatenby, PhD; Stephan Heckers, MD, MSC; John C. Gore, PhD; Ramona O. Hopkins, PhD; E. Wesley Ely, MD, MPH; for the VISIONS Investigation (VISualizing Icu SurvivOrs Neuroradiological Sequelae)

Discharge 3 Months 2A 2B 7.0-6.5 6.0 **Hippocamp** 5.5 5.0 4.5 4.0 Volumes, cm³ 3.5-P < 0.00 P = 0.17 2C 2D 35 Iperior Frontal Lobe 30 25 20 P = 0.03 P = 0.0210 12 10 12 Days of Delirium In Hospital

Crit Care Med 2012 Vol. 40, No. 7

N=47; 3 mnd follow-up

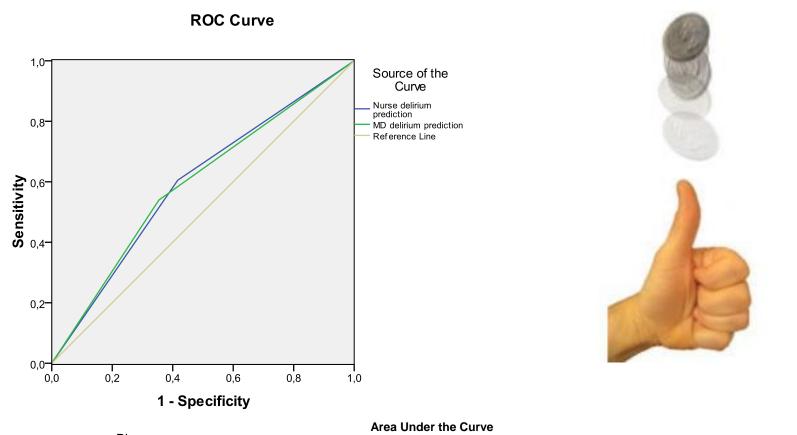
DELIRIUM IS BAD, AND PREVENTION IS BETTER THAN CURE

It is unnecessary to apply preventive measures in all patients:

- Less effective (dilution effect)
- Labor intensive
- Exposure to side-effects

Need for a **delirium prediction model** to identify high risk patients

Can we predict it?


Case

Male 41yr old injured during moutainbiking resulting in mild brain damage and #femur.

- After the operation he was admitted to the ICU:
- sedated with propofol
- morphine 1mg/hr
- there were no signs of infection
- urea level 9 mmol/L
- metabole acidosis
- APACHE-score is 11

What do you think this patient is delirious during ICU stay?

Prediction of nurses and physicians

D					Asymptotic 95% Confidence Interval		
	Test Result Variable(s)	Area	Std. Error ^a	Asymptotic Sig. ^b	Lower Bound	Upper Bound	
	Nurse delirium prediction	,594	,053	,078	,491	,697	dboudumc
	MD delirium prediction	,593	,052	,083	,490	,695	

No, <u>we</u> cannot...

But, a model might do better!

Currently there is/was no delirium prediction model for ICU

patients available, but there are known risk factors in ICU

patients

Delirium prediction studies

- 1. Cohort study (1yr) including >1600 patients to develop a model
- 2. Cohort study (4mos) including >550 patients to validate the model
- 3. Multicenter cohort study including >900 patients for external validation
- 4. Multinational cohort study including > 1800 patients to recalibrate the model

For all studies, all consecutive patients were screened

Delirium prediction model

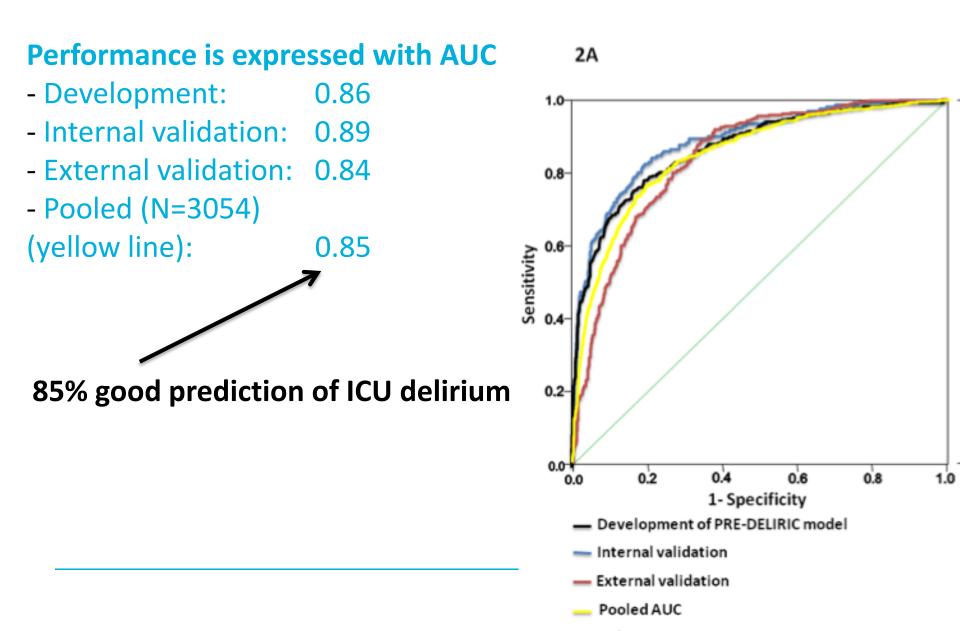
- 25 known risk factors for ICU patients
 - Age
 - APACHE-II
 - Infection
 - Coma
 - Renal and liver function
 - Dementia
 - Sedative use
 - Morphine use,
 - etc

Delirious

Minimal 1 positive CAM-ICU screening

Statistical approach: logistic regression analyses and bootstrapping

Development of PRE-DELIRIC-model


Variables	Odds ratio
1. Age per year	1.04
2. APACHE-II score per point	1.06
 3. Coma: Medication induced Miscellaneous Combination 	RC 1.81 18.46 21.33
 4. Diagnose group Surgery Medical Trauma Neurological/neurosurgery 	RC 1.39 3.38 4.45
5. Infection	3.12
6. Metabolic acidosis (yes/no)	1.37
 7. Morphine use 0.01 - 7.1mg/day 7.2 - 18.6mg/day >18.6mg/day 	RC 1.56 1.15. 1.74
8. Sedation	4.52
9. Urea increased per mmol/L	1.03
10. Urgent admission	1.54

Delirium prediction studies

- 1. Cohort study (1yr) including >1600 patients to develop a model
- 2. Cohort study (4mos) including >550 patients to validate the model
- 3. Multicenter cohort study including >900 patients for external validation
- 4. Multinational cohort study including > 1800 patients to recalibrate the model

For all studies, all consecutive patients were screened

How well does this model predict?

What is the performance of the model in other countries?

Delirium prediction studies

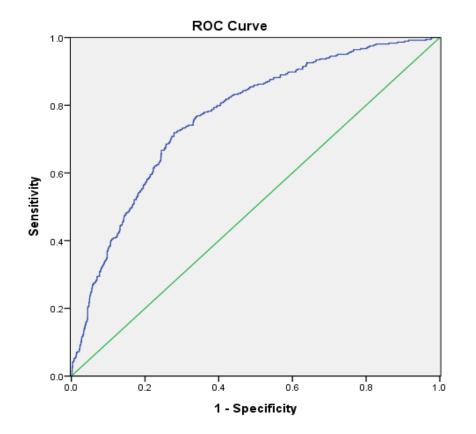
- 1. Cohort study (1yr) including >1600 patients to develop a model
- 2. Cohort study (4mos) including >550 patients to validate the model
- 3. Multicenter cohort study including >900 patients for external validation
- 4. Multinational cohort study including > 1800 patients to recalibrate the model

For all studies, all consecutive patients were screened

Multinational cohortstudy

- 8 hospitals from 6 countries particpated (Australia, Belgium, Germany, Spain, Sweden, and UK)
- Data collection period for 3 months
- 1850 patients were included

Results


Table 1. Patient characteristics and predictors of included patients of the participating hospitals

	Belgium	Germany	Spain	Sweden	Australia	Australia	UK	UK
	Antwerp	Berlin	Madrid	Stockholm	Brisbane	Canberra	Prescot	Kent
	(n=566)	(n=223)	(n=128)	(n=77)	(n=329)	(n=195)	(n=235)	(n=71)
Age, years (mean, SD)	61±15	62±16	60± 17	61±17	55±18	63±16	62±17	62±17
APACHE-II points (mean, SD)	26±8	17±8	8±5	14±7	16±6	18±6	17±7	15±7
No coma	499 (88%)	184 (83%)	114 (89%)	47 (61%)	239 (73%)	146 (75%)	138 (59%)	38 (54%)
Coma due to:					\sim			\frown
 Medication induced 	58 (10%)	37 (17%)	14 (11%)	23 (30%)	31 (9%)	34 (17%)	70 (30%)	28 (39%)
 Miscellaneous 	0	2 (1%)	0	1 (1%)	5 (2%)	4 (2%)	4 (2%)	5 (7%)
- Combination	9 (2%)	0	0	6 (8%)	54 (16%)	11 (6%)	23 (10%)	0
No morphine use	347 (79%)	203 (91%)	77 (61%)	25 (42%)	258 (82%)	182 (94%)	175 (75%)	66 (93%)
- Morphine 0.01-7.1mg/day	30 (7%)	10 (5%)	13 (10%)	11 (18%)	7 (2%)	2 (1%)	4 (2%)	0
- Morphine 7.2-18.6mg/day	41 (9%)	8 (4%)	23 (18%)	15 (25%)	19 (6%)	3 (2%)	6 (3%)	0
 Morphine >18.6mg/day 	20 (5%)	2 (1%)	13 (10%)	9 (15%)	31 (10%)	7 (4%)	48 (21%)	5 (7%)
Sedated	194 (34%)	35 (16%	21 (16%)	43 (56%)	271 (82%)	83 (43%)	94 (40%)	33 (47%)
Urgent admission	330 (58%)	114 (51%)	45 (35%)	61 (79%)	159 (48%)	149 (76%)	228 (97%)	61 (86%)
Diagnose group								
- Surgical	286 (51%)	110 (49%)	92 (72%)	26 (34%)	196 (60%)	63 (32%)	65 (28%)	31 (44%)
- Medical	164 (29%)	55 (25%)	8 (6%)	39 (51%)	77 (23%)	112 (57%)	161 (69%)	38 (54%)
- Trauma	1 (0%)	24 (11%)	2 (2%)	12 (16%)	42 (13%)	12 (6%)	4 (2%)	2 (3%)
 Neurology/neurosurgical 	115 (20%)	34 (15%)	26 (20%)	0	14 (4%)	8 (4%)	5 (2%)	0
Infection or strong suspicion	92 (16%)	39 (18%)	19 (15%)	51 (66%)	99 (30%)	80 (41%)	97 (41%)	39 (55%)
Metabolic acidosis	205 (36%)	18 (8%)	26 (20%)	29 (38%)	57 (17%)	91 (47%)	90 (38%)	9 (13%)
Highest urea level in mmol/L	4.9±3.7	16.0±11.3	15.5±7.6	11 1+8.7	7.9±6.4	9.3±5.9	11.5±9.6	13.5±12.7
Delirious, n (%)	86 (15%)	60 (27%)	23 (18%)	30 (39%)	42 (13%)	23 (12%)	73 (31%)	26 (37%)

Data are expressed as mean with standard deviation, unless reported otherwise

Significant differences on predictors between the centers

Performance PREDELIRIC internationally

AUC: 0.77 (95%CI: 0.74-0.79) = 77% good prediction

Case

Male 41yr old injured during moutainbiking resulting in mild brain damage, #femur. After the operation he was admitted to the ICU, sedated with propofol, morfine 1mg/uur, there were no signs of infection, urea level 9 mmol/L, metabole acidosis, APACHE-score is 11

In formula:

-6.31 (41*0.04+22*0.06+0.55+1.13+0.13+0.29 +0+1.39 +9.4*0.03+0.4)= 1.526791

EXP(1.526791)/(1+EXP 1.526791)=

Delirium probability: 94%

- http://itunes.apple.com/us/app/deliriumicu/id511306390
- https://play.google.com/store/apps/details?id=dotsdigits.deliriumicu

"Last" prediction study

• Can we predict ICU delirium immediately after ICU admission ?

 Multinational cohort study with 13 participating ICUs from 7 countries

Results

Variables	Development (N= 1962)	Validation (N= 952)
Age in years*	61.7 (53-74)	60.6 (51-73)
Male, N (%)	1166 (59.4)	550 (57.8)
Admission category, N (%) - surgical - medical - trauma - neurology/neurosurgical	1019 (51.9) 683 (34.8) 90 (4.6) 170 (8.7)	476 (50.0) 338 (35.5) 44 (4.6) 94 (9.9)
Urgent admission, N (%)	1163 (59.3)	570 (59.9)
LOS-ICU in days*	2.0 (1-6)	2.0 (1-5)
Delirium, N (%)	481 (24.5)	208 (21.8)

Results

Model consist of 9 predictors available at time of ICU admission:

- 1. age
- 2. cognitive impairment (history of dementia, MCI, delirium)
- 3. alcohol abuse (documented history)
- 4. *admission category* (surgical, medical, trauma, neurology/-surgical)
- 5. urgent admission
- 6. mean arterial blood pressure
- 7. use of *corticosteroids* (except inhalation corticosteroids)
- 8. respiratory failure
- 9. blood urea level (mmol/L)

Results

Sensitivity

Discrimination of E-PREDELIRIC

ROC Curve 1,0* 0,8-0 Fraction with actual outcome ~ Ø 0,6-0 0.6 0.4-4 Ö 0.2 0,2-0.0 0,0 0.2 0,4 0.6 0,8 1,0 0.0 0.2 0.6 0.8 1.0 0.4 1 - Specificity

Predicted probability

AUC: development 0.76 and validation: 0.77

Radboudumc

Calibration

Now we can predict delirium,

can we also prevent ICU delirium?

Radboudumc

Early delirium treatment

 Early vs late treatment: decrease in mortality, less infections and lower workload

TABLE 2: Main outcomes in patients with delirium in the intensive care unit whose delirium treatment began within 24 h (immediate therapy) or > 24 h (delayed therapy) after delirium diagnosis			
Outcome	Immediate therapy n = 184	Delayed therapy n = 20	Statistical significanceª
Mortality	16 (8.7)	7 (35.0)	P = 0.003
Nosocomial infections	134 (72.8)	19 (95.0)	P = 0.029
Pneumonia	92 (50.0)	16 (80.0)	P = 0.017
Mechanical ventilation (days)	8.5 (0 - 90)	12.8 (0 - 41)	NS
Length of ICU stay (days)	17.2 (3 – 90)	20.0 (3 - 42)	NS
APACHE II score at discharge	16.9 (6 – 43)	24.1 (7 – 45)	P = 0.002
SOFA score at discharge	3.9 (0 – 18)	7.5 (1 – 19)	P = 0.005
TISS-28 score at discharge	27.3 (3 – 66)	36.9 (13 –60)	P = 0.001

The Journal of International Medical Research 2010; 38: 1584 – 1595

Delayed Treatment of Delirium Increases Mortality Rate in Intensive Care Unit Patients

A Heymann^{1*}, F Radtke^{1*}, A Schiemann¹, A Lütz¹, M MacGuill¹, KD Wernecke^{1,2} and C Spies¹

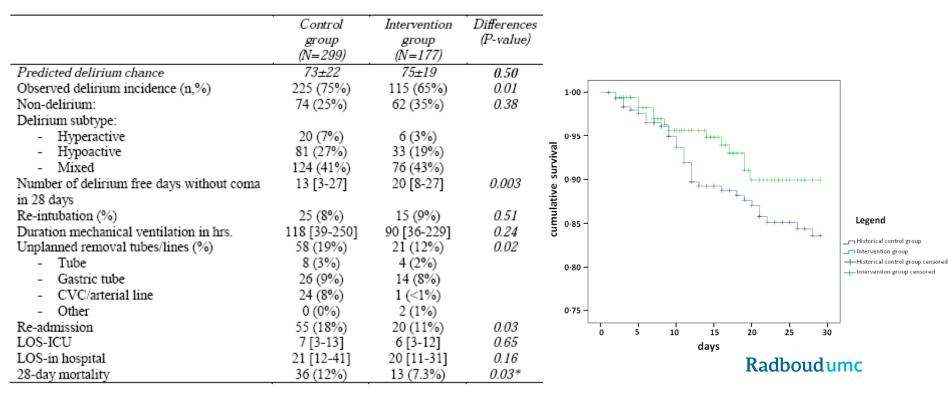
ICU delirium prevention

- Pharmacological
- Non-pharmacological prevention

Pharmacological delirium prevention

- Haloperidol low dosage is maybe effective
 - In non-cardiac surgery ICU patients randomized to haloperidol (n=229) max. of 5mg (continuously) or placebo (n=228) resulted in a decrease of delirium, increase of delirium-coma-free days. No risk stratification was

made (Wang et al., 2012)


	Haloperidol (n = 229)	Placebo $(n = 228)$	р
Length of stay in intensive care unit ^a , median (95% CI), hr	21.3 (20.3–22.2)	23.0 (20.9–25.1)	.024
Time to onset of delirium ^{<i>a</i>} , mean (95% CI), d Occurrence of brain dysfunction ^{<i>b</i>} , n (%)	6.2(5.9-6.4)	5.7(5.4-6.0)	.021
Coma ^c	2(0.9)	2(0.9)	1.000
Delirium	35 (15.3)	53 (23.2)	.031
Coma or delirium ^c	36 (15.7)	54 (23.7)	.032
Number of days without brain dysfunction ^{d} , mean \pm sp. d			
Coma-free ^c	7.0 ± 0.5	7.0 ± 0.2	.608
Delirium-free	6.8 ± 0.5	6.7 ± 0.8	.027
Coma-free and delirium-free ^c Occurrence of nondelirium complications, n (%)	6.8 ± 0.7	6.7 ± 0.9	.030
Within 7 d after surgery	35 (15.3)	40 (17.5)	.514
Within 28 d after surgery	41 (17.9)	48 (21.1)	.395
Length of stay in hospital after surgery ^{<i>a</i>} , median (95% CI), d	11.0 (10.1–11.9)	11.0 (10.2–11.8)	.255

 Hope trial: randomized to haloperidol (3x2.5mg) or placebo. No differences were found on outcome. Small study of 140 patients, delirium before inclusion was no exclusion criteria, no risk stratification was made (Page et al., 2013)

Pharmacological delirium prevention

- Haloperidol low dosage is maybe effective
 - Pre-Posttest study (van den Boogaard et al., 2013) in high risk patients (predicted risk ≥50%) using 3x1 mg haloperidol had beneficial effects on outcome.

Table 2. Differences between control group and complete intervention group.

Delirium risk <70%	Control (N=110)	Intervention (N=68)
PRE-DELIRIC score	50±19	55±16
Delirium incidence (N,%)	55 (50%)	30 (44%)
Delirium-free-days 28 days [median, IQR]	26 [10-28]	26 [13-28]
28-day mortality	13 (12%)	6 (9%)

- The higher the risk, the more beneficial prevention was

- Confirms the need for a delirium prediction model

- Confirmation in RCT is needed

Delirium risk 71-90%	Control (N=111)	Intervention (N=60)
PRE-DELIRIC score	81±5	81 ± 5
Delirium incidence (N,%)	94 (85%)	44 (73%)
Delirium-free-days 28 days [median, IQR]	11 [3-22]	20 [7-27]
28-day mortality	13 (12%)	5 (8%)

Delirium risk >90%	Control (N=78)	Intervention (N=48)
PRE-DELIRIC score	94±3	95±3
Delirium incidence (N,%)	76 (97%)	41 (85%)
Delirium free days 28 days [median, IQR]	4 [0-14]	13 [6-21]
28-day mortality	10 (13%)	2 (4%)

Radboudumc

Non-pharmacological measures

- Early mobilization (Schweickert et al.) results in shorter duration of delirium (median 2 days vs median 4 days). Small study that needs to be confirmed
- Multicomponent interventions in non-ICU patients focusing on several risk factors (cognitive impairment, sleep deprivation, immobility and visual and hearing impairment) resulted in a significant reduction on delirium incidence and duration
- Studies to confirm this in ICU patients should be performed
- Interestingly: reorientation strategy resulted in less delirium and brightlight therapy resulted in reduced severity of delirium

Small prevention studies in the ICU showed positive effects on delirium Outcome (pharmacological and non-pharmacological interventions) but needed all to be confirmed in larger randomized controlled trials

Final conclusion

- ICU delirium occurs frequently and is associated with poor outcome
- Delirium detection by ICU nurses is possible but there is a need for improvement in delirium assessment tools
- We now can predict ICU delirium in an early stage of ICU admission which is helpfull for preventive measures in high risk patients
- Delirium prevention seems beneficial for ICU patients
 BUT THERE IS STILL MUCH TO GAIN IN ICU DELIRIUM

Welcome to next Venticare congres for ICU nurses

International program

Sepsis

Chairs: Prof. J. Bakker, MD, PhD & Prof. P. Pickkers, MD, PhD

1. The approach to a patient in septic shock; *P. Pickkers*

Physiology of the heart in sepsis;

J. Bakker

 Advanced measurements of the circulation in shock; E. Boerma

BREAK

Sedation, Analgesia and Delirium

 Delirium or not, that's the question; *I. Zaal* What can we do for our delirious patient; *M. van der Jagt*

LUNCH

Respiratory failure treatment options Chairs: Prof. D. Gommers, MD, PhD & L. Heunks, MD, PhD

 NAVA (invasive and noninvasive); L. Heunks
 Lung monitoring; D. Gommers

BREAK

 Difficult weaning made easy; L. Heunks

International program

Shock

Chairs: P. Kingma & Dos Reis Miranda , MD, PhD

 The heart in different types of shock; *F. de Lange* Vasopressors or vasodillators; a dilemma; *P. van der Voort* Fluid management; *H. van der Hoeven*

BREAK

Infections

 The gut as reservoir for infection and resistance; *Dos Reis Miranda* Update of selective gut decontamination; *E. de Jonge*

LUNCH

Renal failure

Chairs: J. Epker, MD & E. Kompanje, PhD

 How to care for the kidney in the ICU; *H. van der Hoeven* Start and stopping rules for hemofiltration; *H. Oudemans* Principles and practice of citrate based filtration and dialysis; *P. Kingma*

BREAK

End of Life

End of Life; J. Epker
 Organ donation; E. Kompanje

http://www.venticare.nl/int-visitors/

Patients Included

Jaarbeurs Utrecht, The Netherlands Program & Registration on www.venticare.nl

Thank you for your attention and have safe drive/flight home

Radboudumc